I show that in order to solve the functional equation $$F_{1}(x+y,z)+F_{2}(y+z,x)F_{3}(z+x,\ y)+F_{4}(x,y)+F_{5}(y,z)+F_{6}(z,x)=0$$ for six unknown functions (x,y,z are elements of an abelian monoid, and the codomain of each Fj is the same divisible abelian group) it is necessary and sufficient to solve each of the following equations in a single unknown function $$\matrix{\quad\quad\quad\quad\quad\quad\quad \quad\quad\quad\quad\quad\quad G(x+y,\ z)- G(x,z)- G(y,z)=G(y+z,x)- G(y,x)- G(z,x)\cr \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad H(x+y,\ z)- H(x,z)- H(y,x)+H(y+z,\ x)- H(y,x)- H(z,x)\cr +H(z+x,\ y)- H(z,y)- H(x,y)=0.}$$