Home
Scholarly Works
Effects of Interfacial Lattice Mismatching on...
Journal article

Effects of Interfacial Lattice Mismatching on Wetting of Ni-Plated Steel by Magnesium

Abstract

In this study, wetting has been characterized by measuring the contact angles of AZ92 Mg alloy on Ni-electroplated steel as a function of temperature. Reactions between molten Mg and Ni led to a contact angle of about 86 deg in the temperature range of 891 K to 1023 K (618 °C to 750 °C) (denoted as Mode I) and a dramatic decrease to about 46 deg in the temperature range of 1097 K to 1293 K (824 °C to 1020 °C) (denoted as Mode II). Scanning and transmission electron microscopy (SEM and TEM) indicated that AlNi + Mg2Ni reaction products were produced between Mg and steel (Mg-AlNi-Mg2Ni-Ni-Fe) in Mode I, and just AlNi between Mg and steel (Mg-AlNi-Fe) in Mode II. From high resolution TEM analysis, the measured interplanar mismatches for different formed interfaces in Modes I and II were 17pct{101¯1}Mg//{110}AlNi$$ 17{\kern 1pt} \;{\text{pct}}_{{\{ 10\overline 11\}_{\text{Mg}} //\{ 110\}_{\text{AlNi}} }} $$-104.3pct{110}AlNi//101¯0Mg2Ni$$ 104.3\;{\text{pct}}_{{\{ 110\}_{\text{AlNi}} //\left\{ {10\overline{1}0} \right\}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} }} $$-114pct0003Mg2Ni//{111}Ni$$ 114\,{\text{pct}}_{{\left\{ {0003} \right\}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} //\{ 111\}_{\text{Ni}} }} $$ and 18pct{101¯1}Mg//{110}AlNi$$ 18\,{\text{pct}}_{{\{ 10\overline 11\}_{\text{Mg}} //\{ 110\}_{\text{AlNi}} }} $$-5pct110AlNi//{110}Fe$$ 5\,{\text{pct}}_{{\left\{ {110} \right\}_{\text{AlNi}} //\{ 110\}_{\text{Fe}} }} $$, respectively. An edge-to-edge crystallographic model analysis confirmed that Mg2Ni produced larger lattice mismatching between interfaces with calculated minimum interplanar mismatches of 16.4pct\{ 101¯1\}Mg//\{ 110\}AlNi$$ 16.4\,{\text{pct}}_{{{\text{\{ 10}}\overline 1 1 {\text{\} }}_{\text{Mg}} / / {\text{\{ 110\} }}_{\text{AlNi}} }} $$-108.3pct\{ 110\}AlNi//\{ 101¯1\}Mg2Ni$$ 108.3\,{\text{pct}}_{{{\text{\{ 110\} }}_{\text{AlNi}} / / {\text{\{ 10}}\overline 1 1 {\text{\} }}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} }} $$-17.2pct\{ 101¯1\}Mg2Ni//\{ 100\}Ni$$ 17.2\,{\text{pct}}_{{{\text{\{ 10}}\overline 1 1 {\text{\} }}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} / / {\text{\{ 100\} }}_{\text{Ni}} }} $$ for Mode I and 16.4pct\{ 101¯1\}Mg//\{ 110\}AlNi$$ 16.4\,{\text{pct}}_{{{\text{\{ 10}}\overline1 1 {\text{\} }}_{\text{Mg}} / / {\text{\{ 110\} }}_{\text{AlNi}} }} $$-0.6pct\{ 111\}AlNi//\{ 111\}Fe$$ 0.6\,{\text{pct}}_{{{\text{\{ 111\} }}_{\text{AlNi}} / / {\text{\{ 111\} }}_{\text{Fe}} }} $$ for Mode II. Therefore, it is suggested that the poor wettability in Mode I was caused by the existence of Mg2Ni since AlNi was the immediate layer contacting molten Mg in both Modes I and II, and the presence of Mg2Ni increases the interfacial strain energy of the system. This study has clearly demonstrated that the lattice mismatching at the interfaces between reaction product(s) and substrate, which are not in direct contact with the liquid, can greatly influence the wetting of the liquid.

Authors

Nasiri AM; Lee MY; Weckman DC; Zhou Y

Journal

Metallurgical and Materials Transactions A, Vol. 45, No. 12, pp. 5749–5766

Publisher

Springer Nature

Publication Date

November 1, 2014

DOI

10.1007/s11661-014-2514-8

ISSN

1073-5623

Contact the Experts team