Microinjection molding of multiwalled carbon nanotubes (CNT)–filled polycarbonate nanocomposites and comparison with electrical and morphological properties of various other CNT‐filled thermoplastic micromoldings Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A series of polycarbonate (PC)/multiwalled carbon nanotubes (CNT) nanocomposites were prepared by diluting a commercially available masterbatch using a neat PC resin in a lab‐scale batch mixer. The obtained nanocomposites were subjected to microinjection molding to fabricate microparts, which have a 3‐step decrease in thickness along the flow direction, under a defined set of processing conditions. The obtained microparts were mechanically divided into 3 different sections, namely, thick, middle, and thin sections, based on thickness. Morphology observations and electrical conductivity measurements were conducted to explore the evolution of microstructure within subsequent microparts. Additionally, a comparison of the electrical and morphological properties of stepped microparts of various thermoplastic polymers filled with CNT was studied. Results suggested that the selection of host polymers influences the dispersion of nanotubes within subsequent moldings, thereby affecting the electrical properties. The thermal stability of subsequent moldings deteriorated upon the addition of CNT, suggesting that the addition of CNT and the thermomechanical history experienced by the polymer melts in microinjection molding might cause a chain scission effect on PC. Raman spectroscopy analysis was used to study the orientation and properties of CNT in microparts.

publication date

  • June 2018