CNT-sorbents for heavy metals: Electrochemical regeneration and closed-loop recycling Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Heavy metal contamination of aquatic environments is a major concern. Carbon nanotubes (CNTs) are among the most effective adsorbents for heavy metal removal due. However, their high cost and their uncertain environmental impact necessitates a closed-loop process through sorbent regeneration and recycling for practical application. Our work demonstrates heavy metal adsorption by carboxylic acid-functionalized single-walled/double-walled carbon nanotubes (f-SW/DWCNTs) and their regeneration using electric fields. We follow a multi-step process: 1) copper in an aqueous solution is adsorbed onto the surface of f-SW/DWCNTs, 2) the copper-saturated f-SW/DWCNTs are filtered onto a microfiltration (MF) membrane, 3) the f-SW/DWCNT coated membrane is used as an anode in an electrochemical cell, 4) an applied electric field desorbs the metals from the CNTs into a concentrated waste, and 5) the CNTs are separated from the membrane, re-dispersed and reused in copper-contaminated water for successive adsorption. With an applied positive electric potential, we achieved ∼90 % desorption of Cu from f-SW/DWCNTs. We hypothesize that the electric field generated at the anode causes electrostatic repulsion between the anode and the electrostatically adsorbed heavy metal ions. The effect of applied voltages, electrode spacing and electrolyte conductivity on the desorption of Cu from CNTs was also investigated.

publication date

  • July 2020