Home
Scholarly Works
Contact engineering of single core/shell SiC/SiO 2...
Journal article

Contact engineering of single core/shell SiC/SiO 2 nanowire memory unit with high current tolerance using focused femtosecond laser irradiation

Abstract

Single nanowire memory units are of particular interest in the design of high-density nanoelectronic circuits, but the performance due to weak contact state remains a major problem. In this paper, bonding between core/shell SiC/SiO2 nanowire and Au electrodes can be improved via local contact engineering with femtosecond (fs) laser irradiation. An optimized heterojunction (Au-SiO2-SiC) is possible since plasmonic enhanced optical absorption can be localized at the metal-oxide (Au-SiO2) interface. Electron transport across the barrier and charge accumulation at the oxide-semiconductor (SiO2-SiC) interface are improved in nanowire circuits. A fast and stable resistance change can be achieved after only one biasing cycle ('write') and the written state can be read/extracted at a low voltage (∼ 0.5 V). Unlike other as-built nanowire circuits, the resistance state can be retained for 10 min in the absence of external power, indicating that these devices can be used for short-term memory units. High current tolerance is also provided in the circuit by the surface oxide shell which acts to protect the inner SiC core. The current density carried by the single SiC/SiO2 nanowire circuit can be as high as ∼3 × 106 A cm-2 before break down, and that breakdown occurs as a two-stage process.

Authors

Lin L; Huo J; Peng P; Zou G; Liu L; Duley WW; Zhou YN

Journal

Nanoscale, Vol. 12, No. 9, pp. 5618–5626

Publisher

Royal Society of Chemistry (RSC)

Publication Date

March 5, 2020

DOI

10.1039/c9nr10690a

ISSN

2040-3364

Contact the Experts team