Revisiting solidification microstructure selection maps in the frame of additive manufacturing Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Understanding microstructural development in additive manufacturing under highly non-equilibrium cooling conditions and the consequent effects on mechanical properties of the final component is critical for accelerating industrial adoption of these manufacturing techniques. In this study, simple but effective theoretical solidification models are recalled to evaluate their ability to predict of microstructural features in additive manufacturing applications. As a case study, the resulting solidification microstructure selection maps are created to predict the stable growth modality and the columnar to equiaxed transition (CET) of an Al-10Si-0.5Mg alloy processed via selective laser melting. The potential of this method in microstructural predictions for additively manufactured products, as well as outstanding challenges and limitations, are discussed.

publication date

  • January 2020