Absence of magnetic ordering in the spin liquid candidate Ca3Cu2GeV2O12 Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Typically, quantum spin liquid candidates can be found in materials with a combination of geometrical frustration along with low spin. Due to its spin of S  =  1/2 the copper (II) ion is often present in the discussion on spin liquid candidates. The solid state compound Ca3Cu2GeV2O12 is a material that crystallizes in the garnet structure (s.g. #230, Ia-3d), where 3D frustration is known to occur. Heat capacity has shown a lack of magnetic ordering down to 0.35 K, confirmed with low temperature neutron diffraction to 0.07 K. This system displays a Weiss temperature of  -0.93(1) K indicating net antiferromagnetic interactions and significant J 1-J 2 competition causing frustration. Using both neutron and x-ray diffraction along with heat capacity and magnetometry, the work presented here shows Ca3Cu2GeV2O12 has potential as a new spin liquid candidate.

authors

publication date

  • March 27, 2020