On the Design of an Aero-Engine Nose Cone Anti-Icing System Using a Rotating Heat Pipe Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The feasibility of using a rotating heat pipe to anti-ice the nose cones of small turbofan aero-engines is investigated. A stationary jacket evaporator design was used to transport heat into the rotating heat pipe located along the central fan shaft of the engine. The rotating heat pipe condenser was made an integral part of the nose cone using a high conductivity, lightweight material and the tip of the nose cone. The use of heating channels along the nose cone and passive heat transfer enhancement in the evaporator were also investigated. The computational model used to predict the heat transfer performance is outlined. The overall heat transfer to the nose cone was 0.8–1.2 kW using water in the heat pipe and 0.4–0.75kW using ethanol. The heating channels were not effective due to the small contact area with the nose cone. The heat transfer enhancement in the evaporator increased the total heat transfer modestly and the temperature of the nose cone increased over the contact area made with the high conductivity material. The results show that rotating heat pipes are a feasible nose cone anti-icing technology.

publication date

  • June 1, 2009