Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • ABSTRACTA series of different carbon (carbon black, carbon nanotubes, and graphite nanoplatelets) filled polypropylene nanocomposites were prepared by melt blending, then followed by compression molding or microinjection molding (µIM). Direct current electrical conductivity measurements and melt rheology tests were utilized to detect the percolated structure for compression molded polypropylene/carbon nanocomposites. For µIM, a rectangular mold insert which has a three‐step decrease in thickness along the flow direction was adopted to study the effect of abrupt changes in mold geometry on the electrical and morphological properties of subsequent micromoldings (µ‐moldings). Results indicated that the µ‐moldings exhibited a higher percolation threshold when compared with their compression molded counterparts. This is largely due to the severe shearing conditions that prevail in the µIM process. The morphology of µ‐moldings containing different carbon fillers was examined using scanning electron microscopy. The development of corresponding microstructure is found to be strongly dependent on the types of carbon fillers used in µIM, which is crucial to the enhancement of electrical conductivity for the resulting µ‐moldings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45462.

publication date

  • November 15, 2017