Home
Scholarly Works
Extended Wavelength Responsivity of a Germanium...
Journal article

Extended Wavelength Responsivity of a Germanium Photodetector Integrated With a Silicon Waveguide Exploiting the Indirect Transition

Abstract

Photo-detection in the wavelength range 1850 to 2000nm using evanescently-coupled germanium detectors grown on silicon waveguides is described. Devices were fabricated at a silicon photonics foundry using a process flow associated with operation in the O, C and L bands, and as such offer a solution for extended wavelength detection which is readily available. Intrinsic sensitivity is via indirect band transitions, which is enhanced by tensile strain and we postulate that it may be further enhanced by defects which arise from the thermal processes associated with Ge on Si growth. The responsivity of p-i-n detectors is 20 mAW at 1850 nm falling to 5mAW at 2000 nm, for a detector length of 50 m. Responsivity is suppressed by electrical doping in the germanium detector which provides parasitic absorption from free carriers. Modifications to the current design are suggested such that integrated germanium p-i-n detectors, directly grown on silicon waveguides would be suitable for high-bandwidth photo-detection up to at least a wavelength of 2000 nm. A Separate-Absorption-Charge-Multiplication Avalanche Photo-Detector is fabricated exploiting the same indirect transition. This detector has a responsivity of 0.31 AW at 1850 nm and 0.08 AW at 1970 nm, for a detector length of only 14 m.

Authors

Anthony R; Hagan DE; Genuth-Okon D; Maestro LM; Crowe IF; Halsall MP; Knights AP

Journal

IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 2, pp. 1–7

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

March 1, 2020

DOI

10.1109/jstqe.2019.2938057

ISSN

1077-260X

Contact the Experts team