Sodium uptake in different life stages of crustaceans: the water fleaDaphnia magnaStrauss Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • SUMMARYThe concentration-dependent kinetics and main mechanisms of whole-body Na+ uptake were assessed in neonate and adult water flea Daphnia magna Strauss acclimated to moderately hard water (0.6 mmol l–1 NaCl, 1.0 mmol l–1 CaCO3 and 0.15 mmol l–1 MgSO4·7H2O; pH 8.2). Whole-body Na+ uptake is independent of the presence of Cl– in the external medium and kinetic parameters are dependent on the life stage. Adults have a lower maximum capacity of Na+ transport on a mass-specific basis but a higher affinity for Na+ when compared to neonates. Based on pharmacological analyses,mechanisms involved in whole-body Na+ uptake differ according to the life stage considered. In neonates, a proton pump-coupled Na+channel appears to play an important role in the whole-body Na+uptake at the apical membrane. However, they do not appear to contribute to whole-body Na+ uptake in adults, where only the Na+channel seems to be present, associated with the Na+/H+exchanger. In both cases, carbonic anhydrase contributes by providing H+ for the transporters. At the basolateral membrane of the salt-transporting epithelia of neonates, Na+ is pumped from the cells to the extracellular fluid by a Na+,K+-ATPase and a Na+/Cl– exchanger whereas K+ and Cl– move through specific channels. In adults, a Na+/K+/2Cl– cotransporter replaces the Na+/Cl– exchanger. Differential sensitivity of neonates and adults to iono- and osmoregulatory toxicants, such as metals, are discussed with respect to differences in whole-body Na+ uptake kinetics, as well as in the mechanisms of Na+ transport involved in the whole-body Na+ uptake in the two life stages.

publication date

  • February 15, 2008