Octupolar versus Néel Order in Cubic 5d2 Double Perovskites Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We report time-of-flight neutron spectroscopy and neutron and x-ray diffraction studies of the 5d^{2} double perovskite magnets, Ba_{2}MOsO_{6} (M=Zn,Mg,Ca). These materials host antiferromagnetically coupled 5d^{2} Os^{6+} ions decorating a face-centered cubic (fcc) lattice and are found to remain cubic down to the lowest temperatures. They all exhibit thermodynamic anomalies consistent with a single phase transition at a temperature T^{*}, and a gapped magnetic excitation spectrum with spectral weight concentrated at wave vectors typical of type-I antiferromagnetic orders. However, while muon spin resonance experiments show clear evidence for time-reversal symmetry breaking below T^{*}, we observe no corresponding magnetic Bragg scattering signal. These results are shown to be consistent with ferro-octupolar symmetry breaking below T^{*}, and are discussed in the context of other 5d double perovskite magnets and theories of exotic orders driven by multipolar interactions.

publication date

  • February 28, 2020