Altered plasma membrane ultrastructure in multidrug-resistant cells Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Multidrug resistance is mediated by P-glycoprotein, an integral plasma membrane component which is thought to function as a drug export pump. This model can explain drug resistance, but fails to account for the broader pleiotropy of the multidrug resistance phenotype. We report here a freeze-fracture study revealing increases in the densities of protoplasmic face intramembrane particles in multidrug-resistant Chinese hamster ovary (CHO) and human leukemic cells. The intramembrane particle density in a CHO cell revertant which had lost the characteristics of the multidrug resistance phenotype was indistinguishable from that of the drug-sensitive parental cell line. This demonstration of a global multidrug resistance-linked change in plasma membrane architecture may have significant implications for understanding the variety of concurrent membrane-related changes which are not easily explained by the current model for multidrug resistance.

publication date

  • February 1988