Temperature-Phased Biological Hydrolysis and Thermal Hydrolysis Pretreatment for Anaerobic Digestion Performance Enhancement Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Thermal hydrolysis (TH) and biological hydrolysis (BH) are two main and growing anaerobic digestion pretreatment technologies. In this study, municipal wastewater sludge samples were collected from the Guelph Wastewater Treatment Plant (WWTP) in Ontario, Canada. The effects of temperature on BH treatment, including BH at 42 °C (BH42), 42 °C followed by 55 °C (BH42+55), 55 °C followed by 42 °C (BH55+42), and 55 °C (BH55) were evaluated for anaerobic digestion performance enhancement and compared with TH treatment at 165 °C. The TH, BH42, BH42+55, BH55+42, and BH55 treatments caused the reduction of volatile suspended solids (VSS) by 22.6%, 17.5%, 24.6%, 23.1%, and 25.9%, respectively. The soluble chemical oxygen demand (sCOD) content of the sludge increased by 377.5%, 323.8%, 301.3%, 286.9%, and 221.7% by the TH, BH55, BH42+55, BH55+42, and BH42 treatments, respectively. Volatile fatty acids (VFA) constituted around 40% of the sCOD in the BH-treated sludge and 6% in the TH-treated sludge. The cumulative methane yields (NmLCH4/g COD fed) of sludge treated by BH55+42 and TH were respectively 23% and 20% higher than that of the untreated sludge. For BH pretreatment, sludge treated by BH55+42 produced more methane than those treated by BH42+55, BH55, and BH42. The methane yields of the combined sludge treated by the TH and BH55+42 treatments were in the ranges of 248.9 NmLCH4/g COD to 266.1 NmLCH4/g COD fed, and 255.3 NmLCH4/g COD to 282.2 NmLCH4/g COD fed, respectively.

publication date

  • December 2018