Home
Scholarly Works
A three-phase simulation of the effect of...
Journal article

A three-phase simulation of the effect of microstructural features on semi-solid tensile deformation

Abstract

A direct finite-element microstructure model for prediction of the deformation behavior of semi-solid metallic alloys is presented. The 2D model geometry is based on a modified Voronoi tessellation, and includes rounded corners to approximate an equiaxed-globular grain structure, liquid surrounding the grains, and micro-porosity. An elasto-plastic empirical constitutive equation is derived for the solid grains, while the liquid is approximated as a perfectly plastic material with a very low yield stress. The resulting three-phase model was used to investigate the effects of fraction solid, porosity, and grain size on the constitutive behavior of a semi-solid aluminum alloy, AA5182. The model predictions were validated against experimental data at high fraction solid. These simulations reveal a strong correlation between semi-solid grain size and yield stress, and between porosity and strain localization. The application of direct finite-element simulations is shown to be an effective technique for examining the effects of microstructure phenomena on the macro constitutive behavior of semi-solid materials.

Authors

Phillion AB; Cockcroft SL; Lee PD

Journal

Acta Materialia, Vol. 56, No. 16, pp. 4328–4338

Publisher

Elsevier

Publication Date

October 1, 2008

DOI

10.1016/j.actamat.2008.04.055

ISSN

1359-6454

Contact the Experts team