ReaxFF Molecular Dynamics Simulation for the Graphitization of Amorphous Carbon: A Parametric Study Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • A parametric study of ReaxFF for molecular dynamics simulation of graphitization of amorphous carbon was conducted. The responses to different initial amorphous carbon configurations, simulation time steps, simulated temperatures, and ReaxFF parameter sets were investigated. The results showed that a time step shorter than 0.2 fs is sufficient for the ReaxFF simulation of carbon using both Chenoweth 2008 and Srinivasan 2015 parameter sets. The amorphous carbon networks produced using both parameter sets at 300 K are similar to each other, with the first peak positions of pair distribution function curves located between the graphite sp2 bond peak position and the diamond sp3 bond peak position. In the graphitization process, the graphene fragment size increases and the orientation of graphene layers transforms to be parallel with each other with the increase of temperature and annealing time. This parallel graphene structure is close to the crystalline graphite. Associated with this graphitization is the presence of small voids and pores which arise because of the more efficient atomic packing relative to a disordered structure. For all initial densities, both potential parameter sets exhibit the expected behavior in which the sp2 fraction increases significantly over time. The sp2 fraction increases with increasing temperature. The differences of sp2 fraction at different temperatures are more obvious in lower density at 1.4 g/cm3. When density is increased, the gap caused by different temperatures becomes small. This study indicates that both Chenoweth 2008 and Srinivasan 2015 potential sets are appropriate for molecular dynamics simulations in which the growth of graphitic structures is investigated.


  • Li, Kejiang
  • Zhang, Hang
  • Li, Guangyue
  • Zhang, Jianliang
  • Bouhadja, Mohammed
  • Liu, Zhengjian
  • Skelton, Adam Arnold
  • Barati, Mansoor

publication date

  • May 8, 2018