Dysfunction of calcium handling by smooth muscle in hypertension Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Dysfunction of ion handling, including binding and fluxes (passive and active transport) of physiologically important ions such as potassium, sodium, calcium, and magnesium, by vascular smooth muscle cell membranes has repeatedly been reported to be associated with the pathophysiology of hypertension. The specific purpose of this review is to summarize and evaluate the evidence for alterations of calcium ion (Ca2+) handling by vascular smooth muscle in various forms of hypertension in the animal model on the basis that regulation of cytoplasmic Ca2+ concentration is a complex and yet vitally important process for a normal function of vascular smooth muscle and that derangement of such a regulation may result in excessive retention of cytoplasmic Ca2+, contribute toward increase of total peripheral resistance, and ultimately lead to elevation of blood pressure. Emphasis is placed upon the consideration of the usefulness of the subcellular membrane fractionation technique in studies of binding and transport of Ca2+ by vascular and nonvascular smooth muscle membranes from genetic as well as experimental hypertensive rats. The limitations of the interpretation of data using such an approach are also considered. Decreased active transport of Ca2+ across isolated plasma membrane vesicles from large and small arteries occurs in several but not all forms of hypertension. This membrane abnormality also occurs in nonvascular smooth muscles and other tissues or cells not confined to the cardiovascular system in genetic hypertension, but not in experimental hypertension. A hypothesis of general membrane defects in spontaneous hypertension is proposed. Since the long-term regulation of blood pressure at the sites of resistant blood vessels is under finely integrated and interacting control systems, namely, the myogenic, neurogenic, and humoral controls, involving many tissues or cells not necessarily confined to cardiovascular system, membrane abnormalities in Ca2+ handling by tissues in each or a combination of these control systems can conceivably lead to hypertension.

publication date

  • April 1, 1985