Calcium competes with zinc for a channel mechanism on the brush border membrane of piglet intestine Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Interactions between Ca(+2) and Zn(+2) at the intestinal brush border membrane occur via unclear mechanisms. We hypothesized that Zn(+2) and Ca(+2) are transported across the brush border membrane via a multidivalent metal channel. Using brush border membrane vesicles (BBMV) prepared from intestines of 8 sow-fed piglets, we sought to determine whether Ca(+2) competes with Zn(+2) for uptake. Extravesicular Zn(+2) was removed with ethylenediamine-tetraacetic acid. Time curves of Zn(+2) and Ca(+2) uptake by BBMV were conducted with increasing concentrations of Ca(+2) and Zn(+2), respectively. Saturation curves compared kinetic parameters of Zn(+2) uptake with and without Ca(+2). In addition, Zn(+2) uptake was measured in the presence of various classical Ca(+2) channel modulators. Over 20 min, a 0.4x concentration of Zn(+2) lowered Ca(+2) uptake by vesicles, whereas a 30x concentration of Ca(+2) was necessary to lower Zn(+2) uptake. These data suggest that Ca(+2) has lower affinity than Zn(+2) for a brush border membrane transport protein. Kinetic parameters showed higher K(m) values with 4 or 15 mM Ca(+2) but unchanged J(max), suggesting competitive inhibition. The Ca(+2) channel blocking agents, La(+3), Ba(+2), verapamil, and diltiazem, inhibited Zn(+2) uptake, whereas calcitriol, trans 1,2 cyclohexanediol, cis/trans 1,3 cyclohexanediol, and the L-type Ca(+2) channel agonist, Bay K8644, induced Zn(+2) uptake. These data were consistent with competition for a common transport mechanism on the brush border membrane, possibly a novel multimetal channel. Copyright 2001 Elsevier Science Inc.

publication date

  • February 2001