Home
Scholarly Works
Histamine: mercurial messenger in the gut
Journal article

Histamine: mercurial messenger in the gut

Abstract

This review considers the possibility that histamine functions as a cellular messenger in the gastrointestinal tract. Any biological messenger must be produced, received, and responded to, and must have its actions quickly terminated. Histamine is no exception. Histamine synthesis from L-histidine occurs in enterochromaffin-like cells, mucosal mast cells, and nerves. Histamine release occurs through both antibody-dependent and antibody-independent mechanisms. Released histamine interacts with a variety of cellular targets (epithelial cells, smooth muscle cells, endothelial cells, neurons, and a variety of immunocompetent cells). Occupation of H1, H2, and H3 receptors, defined by pharmacological agents, is transduced by different intracellular messengers (Ca2+, cyclic nucleotides) into diverse effects such as secretion, contraction, or modulation of other secretagogues. The responses to histamine are terminated by at least three different mechanisms: metabolic transformation by the actions of methyltransferase and diamine oxidase, desensitization at the receptor level, and cellular uptake. In addition to its well-documented effects as a mediator of inflammatory processes, histamine may also function as a neuro- and immunoregulator. While a significant pathophysiological role for histamine has been realized since the earliest description of its effects, the availability of newer pharmacological agents has permitted a finer dissection of its "physiological" effects and raised the possibility of multiple roles for histamine.

Authors

Rangachari PK

Journal

American Journal of Physiology, Vol. 262, No. 1, pp. g1–g13

Publisher

American Physiological Society

Publication Date

January 1, 1992

DOI

10.1152/ajpgi.1992.262.1.g1

ISSN

0002-9513

Contact the Experts team