Home
Scholarly Works
Atmospheric inversion of surface carbon flux with...
Journal article

Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

Abstract

Abstract. In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO2 observations at 210 stations to infer CO2 fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated using a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr−1, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr−1. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr−1 because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.

Authors

Chen JM; Fung JW; Mo G; Deng F; West TO

Journal

Biogeosciences, Vol. 12, No. 2, pp. 323–343

Publisher

Copernicus Publications

Publication Date

January 19, 2015

DOI

10.5194/bg-12-323-2015

ISSN

1726-4170

Contact the Experts team