Role of microtubules in LPS-induced macrophage inflammatory protein-2 production from rat pneumocytes Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We have recently demonstrated that primary cultured rat pneumocytes produce macrophage inflammatory protein-2 (MIP-2) in response to lipopolysaccharide (LPS) stimulation. In this study, we found that brefeldin A, by blocking anterograde transport from the endoplasmic reticulum (ER) to the Golgi apparatus, decreased LPS-induced MIP-2 in the culture medium and increased its storage in cells. This suggests that MIP-2 is secreted via a pathway from the ER to the Golgi apparatus, a process commonly regulated by microtubules. We further found that LPS induced depolymerization of microtubules as early as 1 min after LPS stimulation, and it lasted at least for 4 h. Preventing depolymerization of microtubules with paclitaxel (Taxol; 10 nM to 10 microM) partially inhibited LPS-induced MIP-2 production, whereas the microtubule-depolymerizing agents colchicine (1-10 microM) and nocodazole (1-100 microM) increased LPS-induced MIP-2 protein production without affecting MIP-2 mRNA expression. These results suggest that in pneumocytes, LPS-induced microtubule depolymerization is involved in LPS-induced MIP-2 production and that secretion of MIP-2 from pneumocytes is via the ER-Golgi pathway.

publication date

  • December 2000

has subject area