Effects of Surface Roughness and Bend Geometry on Mass Transfer in an S-Shaped Back to Back Bend at Reynolds Number of 200,000 Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Experiments were performed to investigate the local development of roughness and its effect on mass transfer in an S-shaped bend at Reynolds number of 200,000. The tests were performed over four consecutive time periods using a 203-mm-diameter test section with a dissolving gypsum lining to water in a closed flow loop at a Schmidt number of 1200. The surface roughness and the mass transfer over the test periods were measured using X-ray computed tomography (CT) scans of the surface. Two regions of high mass transfer are found: along the intrados of the first and second bends. The surface roughness in these two regions, characterized by the height-to-spacing ratio, grows more rapidly than in the upstream pipe. There is an increase in the mass transfer with time, which corresponds well with the local increase in the height-to-spacing ratio of the roughness. The two regions of high mass transfer enhancement in the bend can be attributed to both a roughness effect and a flow effect due to the bend geometry. The geometry effect was determined by normalizing the local mass transfer with that in a straight pipe with equivalent surface roughness. The mass transfer enhancement due to the geometry effect was found to be relatively constant for the two high mass transfer regions, with a value of approximately 1.5.

publication date

  • July 1, 2018