Structure-Function Relationships in a Winter Flounder Antifreeze Polypeptide Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The major antifreeze polypeptide (AFP) from winter flounder (37 amino acid residues) is a single alpha-helix. Aspartic acid and arginine are found, respectively, at the amino and carboxyl-termini. These charged amino acids are ideally located for stabilizing the alpha-helical conformation of this AFP by means of charge-dipole interaction (Shoemaker, K. R., Kim, P.S., York, E.J., Stewart, J. M., and Baldwin, R. L. (1987) Nature 326, 563-567). In order to understand these and other molecular interactions that maintain the AFP structure, we have carried out the chemical synthesis of AFP analogs and evaluated their conformations by circular dichroism spectroscopy. We synthesized the entire AFP molecule (37-mer) and six COOH-terminal peptide fragments (36-, 33-, 27-, 26-, 16-, and 15-mers). Peptides containing acidic NH2-terminal residues displayed greater helix formation and thermal stability compared to those peptides of similar size, but with neutral NH2-terminal residues. Helix formation was maximum above pH 9.2. The peptide conformations also displayed a pH-dependent sensitivity to changes in ionic strength. Helix formation was reduced in the presence of acetonitrile. We conclude that the AFP helix is most likely stabilized by: charge-dipole interactions between charged terminal amino acids and the helix dipole, a charge interaction between Lys18 and Glu22 (either a salt bridge or a hydrogen bond), and hydrophobic interactions.

publication date

  • July 1989

has subject area