Home
Scholarly Works
Does nonstationarity in rainfall require...
Journal article

Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?

Abstract

Abstract. In Canada, risk of flooding due to heavy rainfall has risen in recent decades; the most notable recent examples include the July 2013 storm in the Greater Toronto region and the May 2017 flood of the Toronto Islands. We investigate nonstationarity and trends in the short-duration precipitation extremes in selected urbanized locations in Southern Ontario, Canada, and evaluate the potential of nonstationary intensity–duration–frequency (IDF) curves, which form an input to civil infrastructural design. Despite apparent signals of nonstationarity in precipitation extremes in all locations, the stationary vs. nonstationary models do not exhibit any significant differences in the design storm intensity, especially for short recurrence intervals (up to 10 years). The signatures of nonstationarity in rainfall extremes do not necessarily imply the use of nonstationary IDFs for design considerations. When comparing the proposed IDFs with current design standards, for return periods (10 years or less) typical for urban drainage design, current design standards require an update of up to 7 %, whereas for longer recurrence intervals (50–100 years), ideal for critical civil infrastructural design, updates ranging between ∼ 2 and 44 % are suggested. We further emphasize that the above findings need re-evaluation in the light of climate change projections since the intensity and frequency of extreme precipitation are expected to intensify due to global warming.

Authors

Ganguli P; Coulibaly P

Journal

Hydrology and Earth System Sciences, Vol. 21, No. 12, pp. 6461–6483

Publisher

Copernicus Publications

Publication Date

December 18, 2017

DOI

10.5194/hess-21-6461-2017

ISSN

1027-5606

Labels

Sustainable Development Goals (SDG)

McMaster Research Centers and Institutes (RCI)

Contact the Experts team