Lipid vesicles which can bind to protein kinase C and activate the enzyme in the presence of EGTA Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Maximal protein kinase C activity with vesicles of phosphatidic acid and 1,2-dioleoyl-sn-glycerol is observed in the absence of added Ca2+. Addition of phosphatidylcholine to these vesicles restores some calcium dependence of enzyme activity. 1,2-Dioleoyl-sn-glycerol eliminates the Ca(2+)-dependence of protein kinase C activity found with phosphatidic acid alone. Phorbol esters do not mimic the action of 1,2-dioleoyl-sn-glycerol in this respect. This suggests that the 1,2-dioleoyl-sn-glycerol effect is a result of changes it causes in the physical properties of the membrane rather than to specific binding to the enzyme. The effect of 1,2-dioleoyl-sn-glycerol on the phosphatidic-acid-stimulated protein kinase C activity is dependent on the molar fraction of 1,2-dioleoyl-sn-glycerol used and results in a gradual shift from Ca2+ stimulation at low 1,2-dioleoyl-sn-glycerol concentrations to calcium inhibition at higher concentrations of 1,2-dioleoyl-sn-glycerol. Phosphatidylserine-stimulated activity is also shown to be largely independent of the calcium concentration at higher molar fractions of 1,2-dioleoyl-sn-glycerol. Thus, with certain lipid compositions, protein kinase C activity becomes independent of the calcium concentration or requires only very low, stoichiometric binding of Ca2+ to high affinity sites on the enzyme. Protein kinase C can bind to phosphatidic acid vesicles more readily than it can bind to phosphatidylserine vesicles in the absence of calcium. Addition of 1,2-dioleoyl-sn-glycerol to phosphatidylserine vesicles promotes the partitioning of protein kinase C into the membrane in the absence of added Ca2+. There is no isozyme specificity in this binding. These results suggest that a less-tightly packed headgroup region of the bilayer causes increased insertion of protein kinase C into the membrane. This is a necessary but not sufficient condition for activation of the enzyme in the presence of EGTA.

publication date

  • September 1992

has subject area