Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The effects of monovalent cations on the interfacial electrostatic potential (psi d), hydrodynamic shear boundary distance (ds), and membrane curvature were studied in large unilamellar phospholipid and galacto/sulfolipid liposomes containing different fractions of negatively charged lipids. The differential effects of alkali metal ions on psi d could be accurately determined at physiological surface charge densities with a surface-anchored fluorescent probe. Li+ and Na+ more effectively decrease psi d and exhibit higher association constants (Kas) than K+ and Cs+. These two groups of cations display qualitatively different perturbations of the interfacial structure. Combining Kas values with the electrokinetic (zeta) potentials yielded the respective ds values. At low ionic strength ds more substantially increases with Li+ or Na+ than with K+ or Cs+. Increasing surface charge density causes increased membrane curvature in the presence of K+ or Cs+, but this is largely prevented by Li+ or Na+. Membrane binding of the amphiphilic cation acridine orange decreases surface charge and membrane curvature more extensively than H3O+, Li+, and Na+. The differential interface-perturbing behavior of monovalent cations is discussed with regard to their different hydration tendencies that will modulate the extent and stability of the hydrogen-bond network along the charged membrane surface.

authors

  • Kraayenhof, Ruud
  • Sterk, Geert J
  • Wong Fong Sang, Harro W
  • Krab, Klaas
  • Epand, Richard

publication date

  • July 1996