A Novel Linear Amphipathic β-Sheet Cationic Antimicrobial Peptide with Enhanced Selectivity for Bacterial Lipids Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • All known naturally occurring linear cationic peptides adopt an amphipathic alpha-helical conformation upon binding to lipids as an initial step in the induction of cell leakage. We designed an 18-residue peptide, (KIGAKI)3-NH2, that has no amphipathic character as an alpha-helix but can form a highly amphipathic beta-sheet. When bound to lipids, (KIGAKI)3-NH2 did indeed form a beta-sheet structure as evidenced by Fourier transform infrared and circular dichroism spectroscopy. The antimicrobial activity of this peptide was compared with that of (KIAGKIA)3-NH2, and it was better than that of GMASKAGAIAGKIAKVALKAL-NH2 (PGLa) and (KLAGLAK)3-NH2, all of which form amphipathic alpha-helices when bound to membranes. (KIGAKI)3-NH2 was much less effective at inducing leakage in lipid vesicles composed of mixtures of the acidic lipid, phosphatidylglycerol, and the neutral lipid, phosphatidylcholine, as compared with the other peptides. However, when phosphatidylethanolamine replaced phosphatidylcholine, the lytic potency of PGLa and the alpha-helical model peptides was reduced, whereas that of (KIGAKI)3-NH2 was improved. Fluorescence experiments using analogs containing a single tryptophan residue showed significant differences between (KIGAKI)3-NH2 and the alpha-helical peptides in their interactions with lipid vesicles. Because the data suggest enhanced selectivity between bacterial and mammalian lipids, linear amphipathic beta-sheet peptides such as (KIGAKI)3-NH2 warrant further investigation as potential antimicrobial agents.

authors

  • Blazyk, Jack
  • Wiegand, Russell
  • Klein, Jason
  • Hammer, Janet
  • Epand, Richard
  • Epand, Raquel F
  • Maloy, W Lee
  • Kari, U Prasad

publication date

  • July 27, 2001

has subject area