Combining follow-up and change data is valid in meta-analyses of continuous outcomes: a meta-epidemiological study Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • OBJECTIVE: To investigate whether it is valid to combine follow-up and change data when conducting meta-analyses of continuous outcomes. STUDY DESIGN AND SETTING: Meta-epidemiological study of randomized controlled trials in patients with osteoarthritis of the knee/hip, which assessed patient-reported pain. We calculated standardized mean differences (SMDs) based on follow-up and change data, and pooled within-trial differences in SMDs. We also derived pooled SMDs indicating the largest treatment effect within a trial (optimistic selection of SMDs) and derived pooled SMDs from the estimate indicating the smallest treatment effect within a trial (pessimistic selection of SMDs). RESULTS: A total of 21 meta-analyses with 189 trials with 292 randomized comparisons in 41,256 patients were included. On average, SMDs were 0.04 standard deviation units more beneficial when follow-up values were used (difference in SMDs: -0.04; 95% confidence interval: -0.13, 0.06; P=0.44). In 13 meta-analyses (62%), there was a relevant difference in clinical and/or significance level between optimistic and pessimistic pooled SMDs. CONCLUSION: On average, there is no relevant difference between follow-up and change data SMDs, and combining these estimates in meta-analysis is generally valid. Decision on which type of data to use when both follow-up and change data are available should be prespecified in the meta-analysis protocol.

publication date

  • August 2013