Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The carotid body (CB) is a chemosensory organ that detects changes in chemical composition of arterial blood and maintains homeostasis via reflex control of ventilation. Thus, in response to a fall in arterial PO(2) (hypoxia), CB chemoreceptors (type I cells) depolarize, and release neurotransmitters onto afferent sensory nerve endings. Recent studies implicate ATP as a key excitatory neurotransmitter released during CB chemoexcitation, but direct evidence is lacking. Here we use the luciferin-luciferase bioluminescence assay to detect ATP, released from rat chemoreceptors in CB cultures, fresh tissue slices, and whole CB. Hypoxia evoked an increase in extracellular ATP, that was inhibited by L-type Ca(2+)channel blockers and reduced by the nucleoside hydrolase, apyrase. Additionally, iberiotoxin (IbTX; 100 nM), a blocker of O(2)-sensitive Ca(2+)-dependent K(+) (BK) channels, stimulated ATP release and largely occluded the effect of hypoxia. These data strongly support a neurotransmitter role for ATP in carotid body function.