Electrophoretic Concentration and Electrical Lysis of Bacteria in a Microfluidic Device Using a Nanoporous Membrane Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Pathogenic bacteria such as Escherichia coli O157, Salmonella and Campylobacter are the main causes for food and waterborne illnesses. Lysis of these bacteria is an important component of the sample preparation for molecular identification of these pathogens. The pathogenicity of these bacteria is so high that they cause illness at very low concentrations (1–10 CFU/100 mL). Hence, there is a need to develop methods to collect a small number of such bacterial cells from a large sample volume and process them in an automated reagent-free manner. An electrical method to concentrate the bacteria and lyse them has been chosen here as it is reagent free and hence more conducive for online and automated sample preparation. We use commercially available nanoporous membranes sandwiched between two microfluidic channels to create thousands of parallel nanopore traps for bacteria, electrophoretically accumulate and then lyse them. The nanopores produce a high local electric field for lysis at moderate applied voltages, which could simplify instrumentation and enables lysis of the bacteria as it approaches them under an appropriate range of electric field (>1000 V/cm). Accumulation and lysis of bacteria on the nanoporous membrane is demonstrated by using the LIVE/DEAD BacLight Bacterial Viability Kit and quantified by fluorescence intensity measurements. The efficiency of the device was determined through bacterial culture of the lysate and was found to be 90% when a potential of 300 V was applied for 3 min.

publication date

  • February 1, 2017