Adjunctive β2‐agonists reverse neuromuscular involvement in murine Pompe disease Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Pompe disease has resisted enzyme replacement therapy with acid α-glucosidase (GAA), which has been attributed to inefficient cation-independent mannose-6-phosphate receptor (CI-MPR) mediated uptake. We evaluated β2-agonist drugs, which increased CI-MPR expression in GAA knockout (KO) mice. Clenbuterol along with a low-dose adeno-associated virus vector increased Rotarod latency by 75% at 4 wk, in comparison with vector alone (P<2×10(-5)). Glycogen content was lower in skeletal muscles, including soleus (P<0.01), extensor digitorum longus (EDL; P<0.001), and tibialis anterior (P<0.05) following combination therapy, in comparison with vector alone. Glycogen remained elevated in the muscles following clenbuterol alone, indicating an adjunctive effect with gene therapy. Elderly GAA-KO mice treated with combination therapy demonstrated 2-fold increased wirehang latency, in comparison with vector or clenbuterol alone (P<0.001). The glycogen content of skeletal muscle decreased following combination therapy in elderly mice (P<0.05). Finally, CI-MPR-KO/GAA-KO mice did not respond to combination therapy, indicating that clenbuterol's effect depended on CI-MPR expression. In summary, adjunctive β2-agonist treatment increased CI-MPR expression and enhanced efficacy from gene therapy in Pompe disease, which has implications for other lysosomal storage disorders that involve primarily the brain.

authors

  • Li, Songtao
  • Sun, Baodong
  • Nilsson, Mats I
  • Bird, Andrew
  • Tarnopolsky, Mark
  • Thurberg, Beth L
  • Bali, Deeksha
  • Koeberl, Dwight D

publication date

  • January 2013