Molecular development of the extrinsic sensory innervation of the gastrointestinal tract Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The extrinsic sensory innervation of the gastrointestinal tract is the conduit through which the gut and the central nervous system communicate. The hindbrain receives information directly from the bowel via the vagus nerve, while information from spinal afferents arrives in the central nervous system through the dorsal root ganglia. This review focuses on the molecular development of these vagal and spinal innervations, with an emphasis on mechanisms that involve axon guidance. During development, axons from both the nodose ganglia and dorsal root ganglia grow into the gut, innervate their appropriate enteric targets and avoid inappropriate cells in the gut wall. These developmental outcomes suggest that both attractive and repellent molecules are important in establishing the normal pattern of the extrinsic sensory innervation. In the fetal mouse gut, the guidance of vagal sensory axons is mediated by axon guidance molecules, such as netrin and the netrin receptor, deleted in colorectal cancer (DCC), as well as extracellular matrix molecules, such as laminin-111. Dorsal root ganglion neurons are known to express, and their axons to respond to, axon guidance molecules. The question of whether or not these molecules are involved in guiding spinal afferents to the bowel, however, has not yet been examined. It is anticipated that a better understanding of how vagal and spinal afferents innervate the fetal gut and reach specific enteric locations will provide deeper insights into the underlying mechanisms of normal and abnormal sensation from the gastrointestinal tract.

publication date

  • April 2011