Binder migration during drying of lithium-ion battery electrodes: Modelling and comparison to experiment Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The drying process is a crucial step in electrode manufacture as it can affect the component distribution within the electrode. Phenomena such as binder migration can have negative effects in the form of poor cell performance (e.g. capacity fade) or mechanical failure (e.g. electrode delamination from the current collector). We present a mathematical model that tracks the evolution of the binder concentration in the electrode during drying. Solutions to the model predict that low drying rates lead to a favourable homogeneous binder profile across the electrode film, whereas high drying rates result in an unfavourable accumulation of binder near the evaporation surface. These results show strong qualitative agreement with experimental observations and provide a cogent explanation for why fast drying conditions result in poorly performing electrodes. Finally, we provide some guidelines on how the drying process could be optimised to offer relatively short drying times whilst simultaneously maintaining a roughly homogeneous binder distribution.

publication date

  • July 2018