Loss of skills and onset patterns in neurodevelopmental disorders: Understanding the neurobiological mechanisms Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Patterns of onset in Autism Spectrum Disorder, including a pattern that includes loss of previously acquired skills, have been identified since the first reports of the disorder. However, attempts to study such "regression" have been limited to clinical studies, that until recently mostly involved retrospective reports. The current report reflects discussion that occurred at an NIMH convened meeting in 2016 with the purpose of bridging clinical autism research with basic and translational work in this area. This summary describes the state of the field with respect to clinical studies, describing gaps in knowledge based on limited methods and prospective data collected. Biological mechanisms that have been shown to account for regression early in development in specific conditions are discussed, as well as potential mechanisms that have not yet been explored. Suggestions include use of model systems during the developmental period and cutting-edge methods, including non-invasive imaging that may afford opportunities for a better understanding of the neurobiological pathways that result in loss of previously-attained skills. Autism Res 2018, 11: 212-222. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Loss of previously acquired skills, or regression, has been reported in Autism Spectrum Disorder since Kanner's reports in the 1950's. The current report reflects discussion from an NIMH convened meeting in 2016 with the purpose of bridging clinical autism research with basic and translational work in this area. This summary describes the state of the field regarding clinical studies and suggests use of model systems during the developmental period and cutting-edge methods, for a better understanding of the neurobiological pathways that result in loss of previously-attained skills.

publication date

  • February 2018

has subject area