Home
Scholarly Works
Nonclassical Spherical Packing Phases...
Journal article

Nonclassical Spherical Packing Phases Self-Assembled from AB-Type Block Copolymers

Abstract

Among the various ordered morphologies self-assembled from block copolymers, the spherical packing phases are particularly interesting because they resemble the familiar atomic crystals. The commonly observed spherical morphology of block copolymers is the body-centered-cubic phase. Recently, a number of novel spherical packing phases, i.e., the complex Frank-Kasper phases originally obtained in metallic alloys, have been observed in block copolymer melts. Theoretical studies have revealed that conformational asymmetry of the different blocks provides a key mechanism to stabilize the Frank-Kasper phases. Furthermore, local segregation of different copolymers in blends of diblock copolymers and copolymer architectures provides additional mechanisms to enhance the stability of the complex ordered phases. In this Viewpoint we summarize recent advances in our understanding of the formation of the nonclassical spherical packing phases in AB-type block copolymers, emphasizing the formation mechanisms of these fascinating complex ordered structures.

Authors

Li W; Duan C; Shi A-C

Journal

ACS Macro Letters, Vol. 6, No. 11, pp. 1257–1262

Publisher

American Chemical Society (ACS)

Publication Date

November 21, 2017

DOI

10.1021/acsmacrolett.7b00756

ISSN

2161-1653

Contact the Experts team