Turbulence Modeling of Forced Convection Heat Transfer in Two-Dimensional Ribbed Channels Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Although the problem of 2D ribbed channels has been studied heavily in the literature as a benchmark or basic case for cooling of electronic packing, there is still a contradiction in the literature about the suitable turbulence model that should be used in such a problem. The accuracy of the computational predictions of heat transfer rates depends mostly on the choice of the proper turbulence model that is capable of capturing the physics of the problem, and on the corresponding wall treatment. The main objective of this work is to identify the proper turbulence model to be used in thermal analysis of electronic systems. A number of available turbulence models, namely, the standard k-ε, the renormalization group k-ε, the shear stress transport (SST), the k-ω, and the Reynolds stress models, have been investigated. The selection of the most appropriate turbulence model has been based upon comparisons with both direct numerical simulations (DNSs) and experimental results of other works. Based on such comparisons, the SST turbulence model has been found to produce results in very good agreement with the DNS and experimental results and hence it is recommended as an appropriate turbulence model for thermal analysis of electronic packaging.

publication date

  • September 1, 2008