Synthesis of [F3S⋮NXeF][AsF6] and Structural Study by Multi-NMR and Raman Spectroscopy, Electronic Structure Calculations, and X-ray Crystallography
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The salt, [F3S(triple bond)NXeF][AsF6], has been synthesized by the reaction of [XeF][AsF6] with liquid N(triple bond)SF3 at -20 degrees C. The Xe-N bonded cation provides a rare example of xenon bound to an inorganic nitrogen base in which nitrogen is formally sp-hybridized. The F3S(triple bond)NXeF+ cation was characterized by Raman spectroscopy at -150 degrees C and by 129Xe, 19F, and 14N NMR spectroscopy in HF solution at -20 degrees C and in BrF5 solution at -60 degrees C. Colorless [F3S(triple bond)NXeF][AsF6] was crystallized from HF solvent at -45 degrees C, and its low-temperature X-ray crystal structure was determined. The Xe-N bond is among the longest Xe-N bonds known (2.236(4) A), whereas the Xe-F bond length (1.938(3) A) is significantly shorter than that of XeF2 but longer than in XeF+ salts. The Xe-F and Xe-N bond lengths are similar to those of HC(triple bond)NXeF+, placing it among the most ionic Xe-N bonds known. The nonlinear Xe-N-S angle (142.6(3)o) contrasts with the linear angle predicted by electronic structure calculations and is attributed to close N...F contacts within the crystallographic unit cell. Electronic structure calculations at the MP2 and DFT levels of theory were used to calculate the gas-phase geometries, charges, bond orders, and valencies of F3S(triple bond)NXeF+ and to assign vibrational frequencies. The calculated small energy difference (7.9 kJ mol-1) between bent and linear Xe-N-S angles also indicates that the bent geometry is likely the result of crystal packing. The structural studies, natural bond orbital analyses, and calculated gas-phase dissociation enthalpies reveal that F3S(triple bond)NXeF+ is among the weakest donor-acceptor adducts of XeF+ with an Xe-N donor-acceptor interaction that is very similar to that of HC(triple bond)NXeF+, but considerably stronger than that of F3S(triple bond)NAsF5. Despite the low dissociation enthalpy of the donor-acceptor bond in F3S(triple bond)NXeF+, 129Xe, 19F, and 14N NMR studies reveal that the F3S(triple bond)NXeF+ cation is nonlabile at low temperatures in HF and BrF5 solvents.