Home
Scholarly Works
PLP: Protecting Location Privacy Against...
Journal article

PLP: Protecting Location Privacy Against Correlation Analyze Attack in Crowdsensing

Abstract

Crowdsensing applications require individuals to share local and personal sensing data with others to produce valuable knowledge and services. Meanwhile, it has raised concerns especially for location privacy. Users may wish to prevent privacy leak and publish as many non-sensitive contexts as possible. Simply suppressing sensitive contexts is vulnerable to the adversaries exploiting spatio-temporal correlations in the user's behavior. In this work, we present PLP, a crowdsensing scheme which preserves privacy while it maximizes the amount of data collection by filtering a user's context stream. PLP leverages a conditional random field to model the spatio-temporal correlations among the contexts, and proposes a speed-up algorithm to learn the weaknesses in the correlations. Even if the adversaries are strong enough to know the filtering system and the weaknesses, PLP can still provably preserve privacy, with little computational cost for online operations. PLP is evaluated and validated over two real-world smartphone context traces of 34 users. The experimental results show that PLP efficiently protects privacy without sacrificing much utility.

Authors

Ma Q; Zhang S; Zhu T; Liu K; Zhang L; He W; Liu Y

Journal

IEEE Transactions on Mobile Computing, Vol. 16, No. 9, pp. 2588–2598

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

September 1, 2017

DOI

10.1109/tmc.2016.2624732

ISSN

1536-1233

Contact the Experts team