Study of PET intrinsic spatial resolution and contrast recovery improvement for PET/MRI systems
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
This paper studied PET intrinsic spatial resolution and contrast recovery improvement for PET/MRI dual modality systems. A Monte Carlo simulation tool was developed to study positron diffusion in tissues with and without a magnetic field for six commonly used isotopes ((18)F, (11)C, (13)N, (15)O, (68)Ga and (82)Rb). A convolution process was implemented to investigate PET intrinsic spatial resolution, taking into account three factors: positron diffusion range, collinear photon annihilation and finite detector element width. The resolution improvement was studied quantitatively as a function of magnetic field strength for three PET system configurations (whole-body, brain-dedicated and small-animal PET). When the magnetic field strength increases up to 10 T, the system spatial resolution in directions orthogonal to the field for (15)O, (68)Ga and (82)Rb is comparable to that of (18)F without the magnetic field. Beyond 10 T, no significant improvement of spatial resolution was observed. In addition, the modulation transfer function was studied to predict the intrinsic contrast recovery improvement for several existing and promising PET/MRI configurations.