Spontaneous transformation of water’s high-density amorph and a two-stage crystallization to ice VI at 1 GPa: A dielectric study Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Dielectric relaxation spectra of a metastable crystal phase formed on implosive and exothermic transformation of pressure-amorphized hexagonal ice have been measured in situ at 0.97 GPa pressure over a range of temperature. The metastable phase showed no relaxation peak at 130 K and 0.97 GPa. When heated at a fixed pressure of 0.97 GPa, it began to transform at approximately 145 K exothermally to a phase whose relaxation rate and equilibrium dielectric permittivity increased. A second, but slower exothermic transformation also occurred at approximately 175 K. After keeping at 213 K, the relaxation rate and equilibrium permittivity reached the known values of these two quantities for ice VI. Thus the metastable phase transformed to ice VI in two stages. It is conjectured that the intermediate phase in this transformation could be ice XII. The rate of transformation is not determined by the reorientational relaxation rate of water molecules in the ices.

publication date

  • June 22, 2004