Home
Scholarly Works
Susceptibility weighted imaging (SWI)
Journal article

Susceptibility weighted imaging (SWI)

Abstract

Susceptibility differences between tissues can be utilized as a new type of contrast in MRI that is different from spin density, T1-, or T2-weighted imaging. Signals from substances with different magnetic susceptibilities compared to their neighboring tissue will become out of phase with these tissues at sufficiently long echo times (TEs). Thus, phase imaging offers a means of enhancing contrast in MRI. Specifically, the phase images themselves can provide excellent contrast between gray matter (GM) and white matter (WM), iron-laden tissues, venous blood vessels, and other tissues with susceptibilities that are different from the background tissue. Also, for the first time, projection phase images are shown to demonstrate tissue (vessel) continuity. In this work, the best approach for combining magnitude and phase images is discussed. The phase images are high-pass-filtered and then transformed to a special phase mask that varies in amplitude between zero and unity. This mask is multiplied a few times into the original magnitude image to create enhanced contrast between tissues with different susceptibilities. For this reason, this method is referred to as susceptibility-weighted imaging (SWI). Mathematical arguments are presented to determine the number of phase mask multiplications that should take place. Examples are given for enhancing GM/WM contrast and water/fat contrast, identifying brain iron, and visualizing veins in the brain.

Authors

Haacke EM; Xu Y; Cheng YN; Reichenbach JR

Journal

Magnetic Resonance in Medicine, Vol. 52, No. 3, pp. 612–618

Publisher

Wiley

Publication Date

September 1, 2004

DOI

10.1002/mrm.20198

ISSN

0740-3194

Contact the Experts team