Quantitative Parameter-Free Prediction of Simulated Crystal-Nucleation Times Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We present direct comparisons between simulated crystal-nucleation times and theoretical predictions using a model of aluminum, and demonstrate that a quantitative prediction can be made. All relevant thermodynamic properties of the system are known, making the agreement of our simulation data with nucleation theories free of any adjustable parameters. The role of transient nucleation is included in the classical nucleation theory approach, and shown to be necessary to understand the observed nucleation times. The calculations provide an explanation on why nucleation is difficult to observe in simulations at moderate undercoolings. Even when the simulations are significantly larger than the critical nucleus, and when simulation times are sufficiently long, at moderate undercoolings the small concentration of critical nuclei makes the probability of the nucleation low in molecular dynamics simulations.

authors

publication date

  • June 23, 2006