In vivo X-ray fluorescence (XRF) measurement of uranium in bone Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study investigates the applicability of X-ray fluorescence (XRF) to measuring bone uranium concentrations, using a 57Co source to excite the uranium X-rays, with the source and detector in an approximate 180 degrees backscatter geometry relative to the sample position. It is demonstrated, by experiment and Monte Carlo simulation, that the X-ray to coherent peak ratio is linearly related to concentration and is independent of variations in source-sample geometry, thickness of overlying tissue and tibia size. Preliminary in vivo measurements indicate a minimum detectable concentration (MDC) of approximately 20 micrograms/g, which may not be sufficiently sensitive for monitoring occupational workers. However, a larger study of occupationally exposed individuals as well as work with subjects with known significant accidental uranium exposures is necessary to assess the clinical usefulness of this system.

publication date

  • May 1998