Home
Scholarly Works
Unique continuation for Schrödinger operators in...
Journal article

Unique continuation for Schrödinger operators in dimension three or less

Abstract

We show that the differential inequality | Δ u | v | u | has the unique continuation property relative to the Sobolev space H l o c 2 , 1 ( Ω ) , Ω R n , n 3 , if v satisfies the condition ( K n loc ) lim r 0 sup x K | x - y | < r | x - y | 2 - n v ( y ) d y = 0 for all compact K Ω , where if n = 2 , we replace | x - y | 2 - n by - log | x - y | . This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, H = - Δ + v , in the case n 3 . The proof uses Carleman’s approach together with the following pointwise inequality valid for all N = 0 , 1 , 2 , ... and any u H c 2 , 1 ( R 3 - { 0 } ) , | u ( x ) | | x | N C R 3 | x - y | - 1 | Δ u ( y ) | | y | N d y for a.e. x in R 3 .

Authors

Sawyer ET

Journal

Annales de l’institut Fourier, Vol. 34, No. 3, pp. 189–200

Publisher

Cellule MathDoc/Centre Mersenne

Publication Date

January 1, 1984

DOI

10.5802/aif.982

ISSN

0373-0956

Contact the Experts team