Journal article
On quadratic eigenvalue problems arising in stability of discrete vortices
Abstract
We develop a count of unstable eigenvalues in a finite-dimensional quadratic eigenvalue problem arising in the context of stability of discrete vortices in a multi-dimensional discrete nonlinear Schrödinger equation [D.E. Pelinovsky, P.G. Kevrekidis, D.J. Frantzeskakis, Persistence and stability of discrete vortices in nonlinear Schrödinger lattices, Physica D 212 (2005) 20–53]. The count is based on the Pontryagin Invariant Subspace Theorem …
Authors
Chugunova M; Pelinovsky D
Journal
Linear Algebra and its Applications, Vol. 431, No. 5-7, pp. 962–973
Publisher
Elsevier
Publication Date
August 2009
DOI
10.1016/j.laa.2009.03.054
ISSN
0024-3795