Measure of Self-Affine Sets and Associated Densities
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Let $B$ be an $n\times n$ real expanding matrix and $\mathcal{D}$ be a finite
subset of $\mathbb{R}^n$ with $0\in\mathcal{D}$. The self-affine set
$K=K(B,\mathcal{D})$ is the unique compact set satisfying the set-valued
equation $BK=\displaystyle\bigcup_{d\in\mathcal{D}}(K+d)$. In the case where
$\text{card}(\mathcal{D})=\lvert\det B\rvert,$ we relate the Lebesgue measure
of $K(B,\mathcal{D})$ to the upper Beurling density of the associated measure
$\mu=\lim\limits_{s\to\infty}\sum\limits_{\ell_0,\dotsc,\ell_{s-1}\in\mathcal{D}}\delta_{\ell_0+B\ell_1+\dotsb+B^{s-1}\ell_{s-1}}.$
If, on the other hand, $\text{card}(\mathcal{D})<\lvert\det B\rvert$ and $B$ is
a similarity matrix, we relate the Hausdorff measure $\mathcal{H}^s(K)$, where
$s$ is the similarity dimension of $K$, to a corresponding notion of upper
density for the measure $\mu$.