Home
Scholarly Works
A Set Theory with Support for Partial Functions
Journal article

A Set Theory with Support for Partial Functions

Abstract

Partial functions can be easily represented in set theory as certain sets of ordered pairs. However, classical set theory provides no special machinery for reasoning about partial functions. For instance, there is no direct way of handling the application of a function to an argument outside its domain as in partial logic. There is also no utilization of lambda-notation and sorts or types as in type theory. This paper introduces a version of von-Neumann-Bernays-Gödel set theory for reasoning about sets, proper classes, and partial functions represented as classes of ordered pairs. The underlying logic of the system is a partial first-order logic, so class-valued terms may be nondenoting. Functions can be specified using lambda-notation, and reasoning about the application of functions to arguments is facilitated using sorts similar to those employed in the logic of the IMPS Interactive Mathematical Proof System. The set theory is intended to serve as a foundation for mechanized mathematics systems.

Authors

Farmer WM; Guttman JD

Journal

Studia Logica, Vol. 66, No. 1, pp. 59–78

Publisher

Springer Nature

Publication Date

January 1, 2000

DOI

10.1023/a:1026744827863

ISSN

0039-3215

Contact the Experts team