Home
Scholarly Works
Frequency Response and Modeling of Resonant-Cavity...
Journal article

Frequency Response and Modeling of Resonant-Cavity Separate Absorption, Charge, and Multiplication Avalanche Photodiodes

Abstract

A theoretical model incorporating the mechanism of resonant absorption of the multiple reflected lightwaves is presented for the frequency response of resonant-cavity (RC) separate absorption, charge, and multiplication (SACM) avalanche photodiodes (APDs). The derived theoretical expressions are general and can be readily applied to many other RC and non-RC APDs. These analytical expressions also allow for fast computation of the frequency response and bandwidth characteristics. Combining this frequency response theory with expressions of multiplication gain and ionization coefficients, an efficient approach is proposed for modeling the general performance characteristics of RC APDs. The modeling approach is applied to an InGaAs/AlGaAs RC SACM APD. The computed results are demonstrated, and the results of −3 dB bandwidth are comparable to experimental work. The validity of the modeling parameters is also discussed. It is further found that the normalized frequency response is unaffected when the value of the absorption coefficient is changed, suggesting that the standing-wave effect within the RC structure may not influence the bandwidth characteristics.

Authors

Xiao YG; Deen MJ

Journal

Journal of Lightwave Technology, Vol. 19, No. 7, pp. 1010–1022

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

July 1, 2001

DOI

10.1109/50.933297

ISSN

0733-8724

Contact the Experts team