Home
Scholarly Works
Generalized Derivatives for Solutions of...
Journal article

Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides

Abstract

Sensitivity analysis provides useful information for equation-solving, optimization, and post-optimality analysis. However, obtaining useful sensitivity information for systems with nonsmooth dynamic systems embedded is a challenging task. In this article, for any locally Lipschitz continuous mapping between finite-dimensional Euclidean spaces, Nesterov’s lexicographic derivatives are shown to be elements of the plenary hull of the (Clarke) generalized Jacobian whenever they exist. It is argued that in applications, and in several established results in nonsmooth analysis, elements of the plenary hull of the generalized Jacobian of a locally Lipschitz continuous function are no less useful than elements of the generalized Jacobian itself. Directional derivatives and lexicographic derivatives of solutions of parametric ordinary differential equation (ODE) systems are expressed as the unique solutions of corresponding ODE systems, under Carathéodory-style assumptions. Hence, the scope of numerical methods for nonsmooth equation-solving and local optimization is extended to systems with nonsmooth parametric ODEs embedded.

Authors

Khan KA; Barton PI

Journal

Journal of Optimization Theory and Applications, Vol. 163, No. 2, pp. 355–386

Publisher

Springer Nature

Publication Date

October 7, 2014

DOI

10.1007/s10957-014-0539-1

ISSN

0022-3239

Contact the Experts team