Mobile Robot Collision Avoidance in Human Environments Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Collision avoidance is a fundamental requirement for mobile robots. Avoiding moving obstacles (also termed dynamic obstacles) with unpredictable direction changes, such as humans, is more challenging than avoiding moving obstacles whose motion can be predicted. Precise information on the future moving directions of humans is unobtainable for use in navigation algorithms. Furthermore, humans should be able to pursue their activities unhindered and without worrying about the robots around them. In this paper, both active and critical regions are used to deal with the uncertainty of human motion. A procedure is introduced to calculate the region sizes based on worst-case avoidance conditions. Next, a novel virtual force field-based mobile robot navigation algorithm (termed QVFF) is presented. This algorithm may be used with both holonomic and nonholonomic robots. It incorporates improved virtual force functions for avoiding moving obstacles and its stability is proven using a piecewise continuous Lyapunov function. Simulation and experimental results are provided for a human walking towards the robot and blocking the path to a goal location. Next, the proposed algorithm is compared with five state-of-the-art navigation algorithms for an environment with one human walking with an unpredictable change in direction. Finally, avoidance results are presented for an environment containing three walking humans. The QVFF algorithm consistently generated collision-free paths to the goal.

publication date

  • January 1, 2013